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An approach to the study of the bifurcational stability of convex shells of revolution of double curvature is proposed, taking into 
account the microdamageability of an isotropic material in the form of the formation of a system of elliptic chaotically distributed 
microcracks throughout its volume, the concentration of which increases as the load increases. The inhomogeneous material 
being damaged is simulated by a continuum, the elastic symmetry and mechanism of deformation of which are associated with 
the character of the distribution of microstrength and the form of the interaction of the edges of the microcracks, which depends 
on the stressed state induced in the body. The problem of bifurcational stability in the case of shells of revolution is formulated 
using the concept of continued loading within the framework of the Kirchoff-Love hypothesis. As an example, problems of the 
stability of ellipsoidal shells in the case of an internal and external pressure are solved. 0 2003 Elsevier Ltd. All rights reserved. 

Because of the inhomogeneity of the strength properties of structural components made from many 
materials, an accumulation of microdefects in the form of plane cracks occurs as the loading level is 
increased [l-4]. As a consequence of such structural changes in a material, the deformation diagram 
is non-linear. There are two possible mechanisms of non-linear deformation. One of these is associated 
with an increase in the concentration of microcracks and the other is associated with the nature of the 
interaction of the surfaces of the microcracks (the opening or closing of a crack), which is determined 
by the nature of the stressed state of the body. 

One of the methods of describing the combined deformation and damageability of a material, where 
the fractured microvolumes are simulated by spheroidal micropores, was proposed in [5,6]. 

A continuum model of the deformation of elasto-brittle materials is proposed below in which the 
deformation is accompanied by the accumulation of damage in the form of plane microcracks which 
are randomly arranged throughout the volume of the body. It is assumed that these microcracks do 
not grow and do not interact with each other during the deformation process. 

The proposed model is used to investigate the local loss of stability of convex shells of revolution. 
Two forms of stability loss are associated with the non-linearity of the equations of state of the material 
being damaged, as when investigating stability beyond the elastic limit [7,8]. These two forms are: stability 
loss during continued loading (no domains of unloading) and stability loss at a constant load (the 
existence of domains of unloading and loading). The concentration of cracks does not change in the 
unloading intervals and the deformation therefore occurs linearly. During loading, the material deforms 
non-linearly as a consequence of the increase in the concentration of cracks, which causes a loss of 
resistance to deformation. Lower values of the critical loading compared with the case of a constant 
load are a consequence of this. For simplicity in formulating the stability problems below, the concept 
of continued loading is used. 

1. COUPLED DEFORMATIONS AND CRACK FORMATION FOR 
A COMPLEX STRESSED STATE 

The equations of state for a damaged material with a constant concentration of plane microdefects in 
the case of omnidirectional stretching, compression and a biaxial stressed state, accompanied by stretch- 
ing and compression, have been obtained in [lo, 111 using the energy method [9]. 

In general case, the relation between the macrostresses and the macrostrains for a medium simulating 
an isotropic material with cracks has the form 

&ij = aijklbkl, i, j,k,I = 1,2,3 (1.1) 
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where the stresses okk[ are assumed to be given in the laboratory system of coordinates oXix$s associated 
with the representative volume and the strains cj, are subject to averaging. The effective compliances 
a$,, of the damaged material are determined by the energy method [9], which is based on the principle 
of the equivalence of the energy of a damaged medium and the continuum which simulates it [12]. The 
energy density of the strain of the model medium is written in the form 

W = ‘/* UijklCijOk[ = W” + W’, W” = */2 a&op,, (1.2) 

where W is the energy density of the continuum and W’ is the increment in the energy density of the 
strain of the damaged medium associated with the release of internal energy as a consequence of the 
breaking of bonds accompanying the normal detachment and displacement of the crack surfaces. 

The energy density released by the damaged material can be determined in the form of the work of 
the mutual displacement of the crack surfaces caused by the stresses which would take place in the case 
of a specified load in a continuum at sites which are occupied by cracks [9], 

W’ = ; ; [l&&ds,, i = 1,2,3 
k= Is, 

(1.3) 

which N,, is the number of cracks per unit volume, @ (i = 1,2,3) are the displacement at the points 
of the surface of the kth crack, Sk is the total surface of the kth crack and cri (i = 1, 2, 3) are the 
components of the stress tensor in the natural system of coordinates of the kth crack okx~&$ In the 
case of elliptic cracks, the axes O%,?‘ (i = 1,2) are directed along the semi-major (a) and semi-minor 
(b) axes of the cracks and the axis &x5 is directed along the normal to their surfaces. The local stresses 
o$, causing the displacements of the crack edges, and the average stresses oii in the representative volume 
are related by the transformation 

k k k 
Oi3 = (Tmnaima3n (1.4 

where ah, a& are the direction cosines of the natural system of coordinates of the kth crack, determined 
by the Euler angles (ek, cpk, $), with respect to the laboratory system of coordinates. 

In the case of an extensive distribution of cracks over orientations (Cl, cp, v) and dimensions (a, b), 
the compliances of the damaged material are determined in terms of the characteristics of the cracks 
and the constants of elasticity of the continuum 

aijkl = afjkl + aijkl (1.5) 

Here a& is the result of averaging W’, that depends on distribution of the cracks with respect to their 
orientations and dimensions, which is completely specified by the density distribution F(cp, w, 0, a, b), 

W) = $fffff F( cp, w, 8, a, 6) w’sinBdqMyd0dadb 
we ab 

and, also, on the nature of the interaction of the surfaces of the microcracks, which is determined by 
the form of the stressed state induced in the body. In particular, the case of an isotropic material with 
defects in the form of plane cracks, which are distributed statistically homogeneously and isotropically 
throughout the volume, during omnidirectional compression the second terms on the right-hand side 
of equalities (1.5) will be determined by the relations [lo, 111 

a:iii = $(I - 3f*)A~, aiijj = -A( 1 + 2f*)Ae 

aijij = $(3 -4f*)Ae, (i, j) = 1,2,3; A = A,+A, 
(l-6) 

where Ai and A2 are quantities which determine the contribution of the crack to the increment in the 
energy density liberated during longitudinal and transverse shear, E is the concentration crack andfis 
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the coefficient of sliding friction on the crack surfaces. Formulae for the first three quantities are given 
below. 

In the case of a complex stressed state in which stretching is combined with compression, an isotropic 
damaged material behaves as an anisotropic, physically non-linear medium, due to the dependence of 
the number of cracks which open and close during deformation on the values and signs of the tensor 
components of the average stresses throughout the volume. As applied to problems of the stability of 
shells, a stressed state of the type 

o,,<o, o,,>o, O,,lO 

is considered. 
In this case, only cracks which are orientated at angles (p” to the direction of the stretching stress 

open. The values of these angles satisfy the inequalities 

(i- 1)x: - arctgh, <(Pk<(i- l)rc+ arctgh* 

hi = 012/)0*11 + (-l)‘Ja~*lO~i + O*JlOiil, i = 1,2 

In accordance with the general procedure for the method being applied, three versions of the 
expressions for the second terms of the compliances in relations (1.5) are obtained, depending on the 
nature of the interaction of the crack surfaces (henceforth, unless otherwise stated, i,j = 1,2 everywhere): 
(1) ideal slippage on the crack surfaces (0:s < O,f = 0) 

Uiiii = LA + k$iA, 15 
> 
E, aiijj = -AA + kji?A, 

> 
E 

(1.7) 

(2) the friction coefficient is sufficiently large so that there is no slippage of the surfaces in closed cracks 
(43 < 0, b&l -443I) 

aiiii = (k$iA + kfiA3)tz, 

aijij = (ktilA + kiiiA,)& 

aiijj = (kji;A + kjiiAs)c 
U.8) 

\3)&;he f$i;; forces on the crack surfaces are smaller than the local shear stresses (05~ < 0, 
013 > 033 

aiijj = -A[ 1 + f2(2 - 15k;;;)]A + kj;;A, 
i 

E (1.9) 

Here 

k(m) 3m-5 
1122 = 30rr 

k(m) m+5 3m-5 
1212 = -a-- 30x: s4; 

m = 1,3 

a = a, + fx2, ai = arctgh,, S, = sinna, + sinno,; n = 2,4 
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A=A,+A,, Ai= ‘-vRi(k, v,), A, = - 
1-v; 

EO EoW) 

k2 = 1-b2/a2, k; = l-k2 

K(k), E(k) are complete elliptic integrals of the second kind, and E = 4/mNo(ub2) is a small parameter 
which determines the concentration of the cracks [9]. 

In the case of circular cracks of radius a, the following relations hold 

Al = A, = 
4(1-v;) A = WV3 4% 

x(2-v,)E,’ 3 XEO 
, E= +, (a3> 

In the general case, the technical constants of the damaged material are determined in terms of the 
compliance by the relations 

l l+a!... l -L+a!... -= 
Eii E, I”” c;, - Go ‘JlJ’ 

Here, Eii, Gp vii are the normal moduli of elasticity, the shear modulus and Poisson’s ratio. 
In using the relations presented above to describe the process of complex strain of elasto-brittle 

materials and the formation of cracks in them, it is necessary to find how the bulk concentration of 
microcracks E depends on the loading parameters. Daniels’ structural model for the accumulation of 
defects [13] is suitable for this purpose. The change in the bulk concentrations of microcracks E depends 
on the mechanism of microfracture in the material, the distribution of strength properties throughout 
the volume and, also, on the loading history. 

Microfracture of the separation type is considered below as an example. Fracture associated with 
shear can also be treated similarly. The relations of the first theory of strength [l-4] 

on2 0 (1.11) 

are taken as the criterion of failure of the structural elements, where o is a random quantity which can 
stand for the limiting values of the stretching or compression stresses causing the failure of the structural 
elements of the material. It is assumed that, when the stretching stress o, reaches the value o, a 
microcrack is formed in the corresponding area, the plane of which is normal to the direction of action 
of the stress o,. In the case of a compression stress o,, the microcracks are for the most part orientated 
parallel to the stress o, [2,3]. 

If a sphere of a certain radius is chosen as the representative volume in which the average stresses 
oij (6.i = 1,2,3) are given, the normal stress o, on a small area, the orientation of the normal to which 
is given by the spherical coordinates 8 (latitude) and cp (longitude), will be given by the expression 

0, = o,,cos2qsin2t3 + a2,sin2~sin2t3 + 033cos2t3 + 

+ 20,,sinrpcoscpsint3 + 2cr,,coscpsinOcos8 + 2a,,sincpsinecosCI 
(1.12) 

The true stretching stress o; on this small area as a consequence of the reduction in the supporting 
area of the section is represented by the relation 

68 = 6,/[ 1 - P,(oA)] 

where P,(ojJJ is a specific portion of the area of intersection of the failed structural elements. The 
concentration of plane microdefects in a random cross-section of the representative volume is therefore 
defined by the probability P,(oA 2 o) that the normal stress values 0; will not be less than the ultimate 
strength of the particles of the microstructure o, which is a random quantity. The supporting area does 
not change (61, = o,) in the case of compression (0, < 0). By analogy with the well-known approach 
[13], the exponential law 
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(1.13) 

is used to approximate the distribution of the mechanical properties of the crystallites and grains of 
different orientation. 

The distribution parameters rl, oo, o, are found using selected values by the method of momentsj 
for example [14]. The principal moments, that is, the average microstrength (0) and the dispersion D 
for distribution (1.13), have the form 

(4 = ~(oc-cro)+oo, 0’ = --&&~(o)cF~+ (0)’ (1.14) 

When (1.13) is taken into account, the mean probability of the failure of structural components 
intersecting a unit area of the surface of the representative volume will be given by the relation 

n2x 

P, sinBdedcp, P, = P(ob) (1.15) 

The physical meaning of the quantityp consists of the fact that it represents the specific fraction of 
a unit area of the surface of a sphere on which the normal stresses o, exceed the ultimate strength o 
of the microparticles which intersect the surface of the sphere. At the same time, in the case of stretching, 
the particles crack along surfaces which are normal to o, while, in the case of compression, they crack 
in the direction of the action of 0,. The bulk concentration of plane microdefects E, which appears in 
relations (1.6)-(1.9), will be given by the ratio of the number of failed microparticles NP to their bulk 
number N in the representative volume. By using the technique employed in petrography to analyse 
thin slices of deposits [15], it can be shown that E = p. 

Hence, the coupled process of deformation and dispersed fracture in the form of the formation of 
a system of stochastically orientated plane microcracks is simulated by the closed system of non-linear 
equations (1.1) (1.6)-(1.9), (l.ll)-(1.13) and (1.15). 

As applied to the formulation and solution of problems of the stability of shells taking the micro- 
damageability of the material into account, the governing equations presented above are later required 
in the form 

011 = 
E22 

, -$,, (E,, +v21&22)3 022 = 1 -V12V2,(E22+“12E~1). (312 = G&u 
12 21 (1.16) 

El1 = + -v12022)9 E22 = -5022 -V21%), $2 = $2q2 
E22 

Here, Eii, Gi2, vii’ are the elasticity characteristics, defined by formulae (1.10) depending on the stressed 
state which is induced in the body. 

2. FORMULATION OF THE PROBLEM OF THE STABILITY OF 
SHELLS OF REVOLUTION MADE OF DAMAGED MATERIAL 

The local loss of stability of thin shells of revolution in the elastic domain of deformation has been 
considered earlier [16]. A similar problem has been solved in [8] beyond the elastic limit. Below, we 
propose a method for solving problems on the local loss of stability of closed shells of double curvature 
which is accompanied by the formation of plane microdefects in the material. A shell of thickness h is 
referred to the system of coordinates Omx1x2x3 connected with the middle surface. The coordinates 
x1, x2, x3 are read off in the meridional direction, the circumferential direction and the direction 
perpendicular to the middle surface respectively. Displacements of the points of the middle surface in 
the above-mentioned directions are denoted by the letters U, u, w. In the case of the type of shells being 
considered, the apparatus of the theory of thin shells [7,8,16] can be used to solve stability problems. 
Then, within the framework of the Kirchhoff-Love hypothesis, the deformations at an arbitrary point 
of the shell will be given by the relations 
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Eij = eij +x3xij (2.1) 

where the strains, curvatures and torsion of the middle surface have the form 

e11 = u.1 -k,w, e22 = ‘u,2 -k2w, e12 = u,~ + u,, 

x11 = -W,llr x22 = -W,22r x,2 = -2w.12 
(2.2) 

The form of the equations of the local loss of stability of shells in a combined form is independent 
of the properties of the material [7,8, 161 

M II, 11 + 2Ml2.12 + M22.22 + W,Q,, + k,@.,,) + mq,w,,l+ 2439, + &y22) = 0 

~11,22+~22,11 -a,,12 = 41Y22-kzw.1, 
(2.3) 

Here, 
h12 

Mij = I X,~ijdX, 
-hl2 

$, ZU, Q, w are the increments of the moments and stresses in the shell as a consequence of flexure 
and, also, of the strains, curvatures and deflections of the middle surface in the perturbed state, OF are 
the stresses in the basic momentless stressed state and kt and k2 are the principal curvatures o 1 the 
shell in the meridional and circumferential directions. 

To these equations it is necessary to add the expressions for the perturbations for the membrane 
stresses in terms of the stress function Q 

0,l = a.229 z22 = *,1,* a,2 = -a,,, (2.4) 

The increments in the stressesBY = oii - 09 and the strains i+ = E~ - E; are determined by the variation 
of Eqs (1.16) in the neighbourhood of the basic stressed state. These equations connect the final 
values of the stresses and strains in the case of a medium which is damaged, taking into account the 
dependence of the moduli of elasticity on the concentration of microcracks E. As a result of variation 
in the neighbourhood of the basic stress-strain state, the perturbations of the stresses and strains are 
represented in the form 

Bii = Ui*i!ll + ai28,, + Ui3~12, 012 = U3lB,* +/.X32& + a33El2 (2.5) 

gii = Ail~ll + Ai2~22 + Ai3312, J?f,, = A~,SI, + aA32a22 + A33al2 CW 

The coefficients aij, Aii, which are given by the relations 

ao,, a011 A a&l1 a&,1 
a,, = =Jp”” = aev ***3 

I1 22 
11 = ao,,‘42 = ao,,’ *a. 

have the form 

(2.7) 

Eii ae V2lEll aa aii = 1 -v12v2r -ai’a’ii* u12 = I -vr2v2, - a”G 

v12E22 ae a& a& 
O21 = 1 -v12v21 -a22&9 a3i = -a,2&* a33 = G12 - a12- 

ac12 

ae C$iii 4212 
ai = -aiiG, aii = b~Ei’, al2 = 072G,27 

Aii = L+ pii&, v12 

Eii 
A,, = -- a& 

II El, 
+ PL’dO,,. 

a& 
Ai = Pii% 

v21 A,, = -- a& a& 
E22 

+ P22G9 A3i = Plpaoii. A33 
ae 

= $+P,,= ,2 
12 



The stability of shells of revolution with microdamages 789 

The relations presented above hold for the general case of the basic stressed state of shells of diverse 
geometry. A problem on the local loss of stability of convex shells of revolution in the case of a uniform 
stressed state is considered next. In this case, Eqs (2.3) when relations (2.4)-(2.7) which hold for 
membrane and flexural stresses and strains, are taken into account, take the form 

D[a,w,,,,, + Q2W,1122 + a3w,2222 + 2u4w,1112 + 2a5W.12221 - 

where 

- T;,w,,, - T;p,,, - %y,2 -W,@,,, + V’,,,) = 0 

Al@,llll + A2@,*122 + &@).2222 - &@,,,12 - ha,1222 = ‘%I~(~,~.,, + k2W,d 

iiij = aijlE,,, Aij = EoAij 

a, = a,,, a2 = ti,,+si,, +4ii,,, a3 = ii,, 

a4 = a,, +a3*, a5 = ii.23 + ii32 

_ - - - - - - - 
AI = A229 A2 = A12 +A21 +A337 A3 = All 
_ - - - - - 
A4 = A32 + A23. A5 = A13 + A31 

D= E,h3/12, T; = o;h 

G=) 

(TP are the linear shear stresses of the subcritical stressed state). 

3. THE AXISYMMETRIC LOADING OF SHELLS 

The local loss of stability of a closed shell of revolution under the action of an internal or external uniform 
pressure of intensity 4 is considered as an illustrative example. In this case, the stresses in the basic 
stressed state are given by the relations 

p2 
T;, = ha;, = m2, Tz2 = hoi2 = f qR2 

$2-X), 

The upper sign refers to the case of an internal pressure. 
The solution of the system of equations (2.8) is represented in the form [8, 161 

w = Asin(k2hX,)sin(k2nx2), h = Xrn 

where m and n are wave numbers in the meridional and circumferential directions. 
The critical pressure is given by the formula 

2k2 Dk;h2(a, + a,y + a,y2)’ + 
E&l + W2 

q* = lr(2-x)y h2(& + Ag + A3y2) 1 

(3.1) 

(3.2) 

(3.3) 

The u per and lower signs refer to the cases of internal and external pressures, respectively. When 
y = n2,& 1, th e minimum value of the critical pressure is given by the formula 

4* = (3.4) 
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In the case of a continuous elastic material (E = 0), expression (3.4) reduces to the well-known formula 
WI 

(3.5) 

In formulae (3.4) and (3.5), ki, k2 are certain mean values of the principal curvatures of segments of 
the shell, which are bounded by the nodal lines of the local forms of loss of stability. 

Of the countless set of values of q* given by formulae (3.4) and (3.5), the minimum value is the 
required value, In the case of closed convex shells, domains of the surface of a shell which contain 
tangents to the generatrix which are parallel or perpendicular to the axis of revolution will be the weakest 
segments in the sense of their local stability. In particular, in elliptic shells these domains are located 
on the equator and at the poles. The curvatures at the poles (the subscriptp) and the equatorial points 
(the subscript e) in a shell with semi-axes a (the radius of the equator) and b are given by the expressions 

k IP 
= blii2, k2p = ih2; k,, = iilb2, k,, = llii P-6) 

It follows from formula (3.4) when expressions (3.6) are taken into account that the critical pressure 
values for ellipsoidal shells, in the case of an external action which depends on the ratio of the semi- 
axes, will be given by the formulae 

4* = 40,x 
(2i2/a2- 1)-i, ii c 6, 

b2/ii2, ii >b 
(3.7) 

Local stability loss close to the equator is possible in the case of an internal pressure 

4* = qZ( 1 - 2E2/ii2)-l, ii>& (3.8) 

The diversity of possible versions of the crack formation in shells is limited by a consideration of 
microdefects in the form of circular cracks and by the choice of a material with the following 
characteristics 

E e 4.2 x 10” Pa, u,, = 0.2, (a) = 1.9 x lo9 Pa 

D = 0.672 x IO9 Pa, 
(3.9 

f = 0 

In the case of a two-parameter distribution of microstrength (formula (1.13) when cro = 0), it follows 
from expression (1.14) in the case of a material with the parameters (3.9) that 

“rl = 2, 6, = 2.8 x lo9 Pa (3.10) 

The concentration of cracks when relations (1.12) (1.13) (1.15) and (3.10) are taken into account will 
be given by the formula 

E = -+30;:+ 20;,0;; + 20;;)l 
150; 

(3.11) 

The expressions for the stresses in the subscritical state in the case of external pressure (a) and internal 
pressure (b) have the form 

(4 41 = (J12 = -qg, (b) of, = q$, og2 = !h$ (3.12) 

It is seen from the last formula (3.12) that stability loss in the case of internal pressure is possible 
when a”//,’ > 2. The coefficients a3,A3, in accordance with expressions (2.7) can be represented in the 
form 



The stability of shells of revolution with microdamages 791 

E 22 a3 = 
Eo(1 - “12”2,) [ ( 1+ 

a& 
a11 - “12U22- 

Wl )I( 1 + a,,$ + CX22$)-1 
11 22 

(3.13) 

In the case of external pressure, by virtue of the simulation of the damaged material as an isotropic 
medium, the constants of elasticity have the form 

E,, = E,, = EO 

1 + E04111 
’ “12 = “21 = %($&22) 

where aill and ailz2 are given by expressions (1.6). In the case of an internal pressure with relations 
(3.13) the quantities Ez2, Ell, vzl, v12, a$222 and ~;~ii, which are given by formulae (1.7) and (1.0) when 
I1 = A2 = @2/g” - q-y correspond to the parameters Ell, E22, v12, v21, a;iii and a$222. 

Expressions (3.7) and (3.8) are complex functions of q*, since the coefficients a3 andA are associated 
with the load. Direct determination of q* is therefore difficult. However, it is not essential when 
estimating the effect of the damageability of shells on their stability. A sequence of values of q* can be 
specified and the corresponding values of the relative thickness of the shells h/ii can be fou_nd using 
formulae (3.7) and (3.8). The results to such calculations for oblate ellipsoidal shells (Z = B) in the 
case of internal pressure, taking into account (subscript +) and ignoring (subscript -) the vulnerability 
to damage, are presented below 

9. x 10-Z 192 3175 7163 12782 20068 29066 52415 83 342 
EX 105 183 733 1650 2933 4583 6600 11733 18333 

(h/ii )+X 106 283 567 853 1141 1434 1730 2340 2976 

(h/ii )_ x 106 282 565 848 1131 1414 1607 2262 2826 

As might have been expected, the effect of the vulnerability to damage of the material on its stability 
increases as the relative thickness of the shells increases. 
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